01: Les suites numériques

I. Le raisonnement par récurrence

1. Présentation

Soit P(n) la propriété : « $7^n + 2$ est divisible par 3 ».

On veut vérifier que cette propriété est vraie pour tout entier naturel n.

Pour cela, il faudrait procéder à une infinité de vérifications (pour tous les entiers naturels, ce qui est, évidemment impossible).

Grâce au raisonnement par récurrence, il est possible de conclure en trois étapes.

2. Axiome de récurrence

Pour démontrer que pour tout entier naturel n supérieur ou égal à n_0 , la propriété P(n) est vraie, on procède en deux étapes :

- Initialisation : On vérifie que la propriété est vraie pour n_0 , c'est-à-dire que $P(n_0)$ est vraie (en général $n_0 = 0$ ou $n_0 = 1$);
- **Hérédité**: On suppose qu'il existe un entier n tel que P(n) soit vraie, et on démontre qu'alors P(n+1) elle est vraie.

On peut alors conclure que P(n) est vraie pour tout entier naturel $n \ge n_0$.

Application

Montrer par récurrence que $7^n + 2$ est divisible par 3.

Exercice 1

Démontrer par récurrence que :

- $4^n 1$ est multiple de 3.
- $1+2+3+...+n=\frac{n(n+1)}{2}$.
- $2^n \ge n+1$.
- $(1+x)^n \ge 1+xn$, avec x un réel positif (inégalité de Bernoulli).

Exercice 2

u est la suite définie par $u_0 = 10$ et pour tout nombre entier naturel n: $u_{n+1} = \frac{1}{2}u_n + 1$.

- 1. Démontrer par récurrence que tout entier naturel n, $u_n \ge 2$.
- 2. Démontrer par récurrence de la suite u est décroissante.
- **3.** Conclure.

Terminale

Exercice 3

On considère la suite (u_n) définie pour tout entier naturel n par $u_{n+1} = u_n + 2n + 3$ et $u_0 = 1$. Démontrer par récurrence que : $u_n = (n+1)^2$.

II. Limite finie ou infinie d'une suite

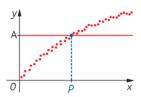
1. Limite infinie d'une suite

Définition

Soit $A \in \mathbb{R}$.

La suite (u_n) admet pour limite $+\infty$ (resp. $-\infty$) si tout intervalle de la forme $A; +\infty[$ ($-\infty; A[$) contient toutes les valeurs u_n à partir d'un certain rang.

On écrit alors $\lim_{n\to+\infty} u_n = +\infty$ (resp. $\lim_{n\to+\infty} u_n = -\infty$).



2. Algorithme de seuil

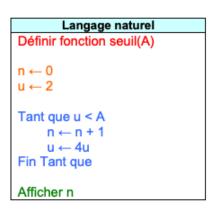
Soit (u_n) une suite qui tend vers $+\infty$.

Le but de l'algorithme est de déterminer le rang à partir duquel u_n soit supérieur à A.

Exemple

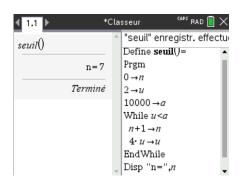
On considère la suite (u_n) définie par $u_0 = 2$ et pour tout entier n, $u_{n+1} = 4u_n$. Cette suite est croissante et admet pour limite $+\infty$.

Algorithme de seuil en langage naturel : Pour A = 10000, on obtient n = 7.

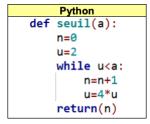


Terminale Page 2 sur 9

Avec la TI Nspire CX CAS:



Avec Python:

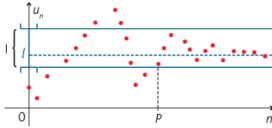


3. Limite finie d'une suite

Définition

La suite (u_n) admet pour limite le réel l si, tout intervalle ouvert contenant l contient toutes les valeurs u_n à partir d'un certain rang.

On écrit alors $\lim_{n\to +\infty} u_n = l$.



On dit que la suite (u_n) converge vers l.

Remarque

Une suite qui n'est pas convergente est dite divergente.

4. Limites de suites usuelles

Propriétés

$$\lim_{n \to +\infty} n = +\infty \qquad \qquad \lim_{n \to +\infty} n^2 = +\infty \qquad \qquad \lim_{n \to +\infty} \sqrt{n} = +\infty$$

$$\lim_{n \to +\infty} \frac{1}{n} = 0 \qquad \qquad \lim_{n \to +\infty} \frac{1}{n^2} = 0 \qquad \qquad \lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$$

Terminale Page 3 sur 9

III. Opérations sur les limites

Soit deux suites de nombres réels (u_n) et (v_n) admettant une limite finie ou infinie, et soit l et m deux nombres réels.

1. Addition: $\lim_{n \to +\infty} u_n + v_n$

$\lim_{n \to +\infty} u_n$ $\lim_{n \to +\infty} v_n$	l	+∞	-∞
m	l+m	+∞	-∞
+∞	+∞	+∞	FI
∞	-∞	FI	

2. Produit : $\lim_{n \to +\infty} u_n \times v_n$

$\lim_{n \to +\infty} u_n$ $\lim_{n \to +\infty} v_n$	<i>l</i> , <i>l</i> ≠ 0	0	+∞	∞
$m, m \neq 0$	$l \times m$	0	±∞	±8
0	0	0	FI	FI
+∞	±∞	FI	+∞	∞
∞	<u>+</u> ∞	FI		+∞

Terminale Page 4 sur 9

3. Quotient: $\lim_{n\to+\infty}\frac{u_n}{v_n}$

$\lim_{n \to +\infty} u_n$ $\lim_{n \to +\infty} v_n$	<i>l</i> , <i>l</i> ≠ 0	0	±∞
$m, m \neq 0$	$\frac{l}{m}$	0	±∞
0	±∞	FI	±∞
+∞	0	0	FI

Remarques

- Le signe du Résultat s'obtient à l'aide de la règle des signes.
- Il y a 4 formes indéterminées principales : $\infty \infty$; $\infty \times 0$; $\frac{\infty}{\infty}$ et $\frac{0}{0}$.

Exercice 4

Déterminer les limites suivantes :

$$\lim_{n \to +\infty} 3n^2 - n + 5 \qquad \lim_{n \to +\infty} \frac{4}{n^2 + 1} \qquad \lim_{n \to +\infty} \frac{3n^2 + 2n - 1}{2n^2 - n + 5} \qquad \lim_{n \to +\infty} \left(n - \sqrt{n} \right)$$

IV. Propriétés sur les limites de suites

1. Limites et comparaison

Théorème

Soit (u_n) et (v_n) deux suites vérifiant les deux conditions :

- à partir d'un certain rang on a $u_n \le v_n$;
- $\bullet \quad \lim_{n \to +\infty} u_n = +\infty$

Alors $\lim_{n\to+\infty} v_n = +\infty$.

Remarque

De manière analogue : si $u_n \le v_n$ à partir d'un certain rang et si $\lim_{n \to +\infty} v_n = -\infty$, alors $\lim_{n \to +\infty} u_n = -\infty$.

Démonstration (type bac)

Soit A un nombre réel.

Puisque $\lim_{n\to+\infty} u_n = +\infty$, alors il existe un rang n_1 à partir duquel tous les termes u_n

appartiennent à l'intervalle $]A;+\infty[$, cad $A < u_n$.

On sait de plus qu'à partir d'un certain rang n_2 , on a $u_n \le v_n$.

A partir du rang $\max(n_1; n_2)$ on a :

$$\begin{cases} A < u_n \\ u_n \le v_n \end{cases} \quad \text{ainsi } A < u_n < v_n, \text{ donc } v_n \in]A; +\infty[$$

Finalement, tout intervalle de la forme $A;+\infty$ contient tous les termes v_n à partir certain rang, et donc $\lim_{n\to+\infty}v_n=+\infty$.

Application 2

Déterminer
$$\lim_{n\to+\infty} n^2 + \cos n$$

2. Théorème d'encadrement (ou des gendarmes)

Soit $l \in \mathbb{R}$ et (u_n) , (v_n) et (w_n) trois suites vérifiant les deux conditions :

- à partir d'un certain rang on a $u_n \le v_n \le w_n$;
- $\bullet \quad \lim_{n \to +\infty} u_n = \lim_{n \to +\infty} w_n = l$

Alors
$$\lim_{n\to+\infty} v_n = l$$
.

Application 3

Déterminer
$$\lim_{n\to+\infty} 1 + \frac{\sin n}{n}$$
.

3. Suites majorées, minorées, bornées

Définition

Soit M et m deux nombres réels. On dit que la suite (u_n) est :

- **Majorée** par M si, pour tout $n \in \mathbb{N}$, $u_n \leq M$;
- **Minorée** par m si, pour tout $n \in \mathbb{N}$, $u_n \ge m$;
- **Bornée** si (u_n) est à la fois majorée et minorée.

Terminale Page 6 sur 9

Application 4

On considère la suite (u_n) définie pour tout entier naturel n par $u_0 = 2$ et $u_{n+1} = \frac{1}{3}u_n + 2$.

Démontrer par récurrence que la suite (u_n) est majorée par 3.

4. Convergence des suites monotones

Théorème 1

Soit $l \in \mathbb{R}$ et (u_n) une suite croissante.

Si $\lim_{n\to +\infty} u_n = l$, alors tous les termes de la suite (u_n) sont inférieurs ou égaux à l.

Remarque

On pourrait dire aussi que la suite (u_n) est majorée par le nombre l.

Théorème 2

- Toute suite croissante et majorée est convergente.
- Toute suite décroissante et minorée est convergente.

Théorème 3

- Toute suite croissante et non majorée a pour limite +∞.
- Toute suite décroissante et non minorée a pour limite -∞.

Démonstration

Soit un réel a.

Comme (u_n) n'est pas majorée, il existe un entier p tel que $u_p > a$.

La suite (u_n) est croissante donc pour tout n > p, on a : $u_n > u_p$.

Donc pour tout n > p, on a: $u_n > a$.

Et donc à partir d'un certain rang p, tous les termes de la suite appartiennent à l'intervalle $a;+\infty$.

On en déduit que $\lim_{n\to+\infty} u_n = +\infty$.

Terminale Page 7 sur 9

Exercice 4

u est la suite définie par $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 2u_n + 3$.

- 1. Démontrer que pour tout $n \in \mathbb{N}$, $u_n > 0$ et en déduire que la suite u est croissante.
- 2. Montrer que si u est majorée, alors elle converge vers un nombre réel négatif.
- **3.** Montrer que *u* n'est pas majorée et déterminer sa limite.

5. Limite d'une suite géométrique

Théorème

Soit $q \in \mathbb{R}$. On a les résultats suivants :

- Si -1 < q < 1, alors $\lim_{n \to +\infty} q^n = 0$;
- Si q > 1, alors $\lim_{n \to +\infty} q^n = +\infty$;
- Si q < -1, alors la suite (q^n) n'admet pas de limite.

Démonstration

Soit $q \in \mathbb{R}$, q > 1. Alors:

$$q = 1 + x$$
, avec $x > 0$.

On sait alors, grâce à l'inégalité de Bernoulli que, pour tout entier n:

Pour tout x > 0, $(1+x)^n \ge 1 + nx$.

Pour
$$x > 0$$
, on a $\lim_{n \to +\infty} nx = +\infty$

On a donc:

- à partir du rang 0, $(1+x)^n \ge 1+nx$;
- $\lim_{n \to +\infty} (1 + nx) = +\infty$

On en déduit que : $\lim_{n\to+\infty} (1+x)^n = +\infty$ autrement dit $\lim_{n\to+\infty} q^n = +\infty$.

Terminale Page 8 sur 9

Exercice 5

Soit (u_n) la suite définie sur \mathbb{N} par $u_n = n^2 + (-1)^n$.

- 1. Conjecturer son comportement à l'infini à l'aide de la calculatrice.
- 2. Démontrer cette conjecture.

Exercice 6

Soit (u_n) une suite décroissante et strictement positive.

Montrer que la suite (v_n) , définie sur \mathbb{N} , par $v_n = \frac{1}{1+u_n}$ est convergente.

Exercice 7

Étudier limite à l'infini de $3^n - 4^n$.

Exercice 8

Soit (u_n) la suite définie par $u_0 = 75$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = 0.6u_n + 50$.

- 1. Démontrer par récurrence que pour tout entier n, on a : $u_n < u_{n+1} \le 125$.
- **2.** En déduire que la suite (u_n) converge.
- **3.** Déterminer la limite de (u_n) .